

Advanced Energy eXperience INNOVATION IN CUTTING & COAGULATION

Innovating for life.

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

The need for innovation in electro surgery

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

References

J

CONTROLLING BLEEDING

Blood loss can lead to impaired visibility of the surgical field and may imply a higher risk of injury to sensitive structures¹

Blood loss increases the risk of transfusions with related adverse outcomes, impacting length of hospital stay²

MINIMISING THERMAL TISSUE DAMAGE

The high temperatures used with standard electro surgery systems lead to thermal tissue damage, compromising wound strength, wound healing and the cosmetic appearance of scars^{3,4}

IMPROVING OPERATING ROOM EFFICIENCY

Exchanging devices for cutting and coagulation during surgery may lead to operating inefficiencies

Limited operating room space requires smarter set up of OR equipment

LIMITING EXPOSURE TO SURGICAL SMOKE

Smoke produced by electro surgical instruments contains hazardous components and exposure to these components may lead to potential long-term health hazards^{5,6,7}

REDUCING HOSPITAL INVENTORY

There is an increasing pressure on hospitals to reduce acquisition costs for capital equipment. Bundling technologies that can be used across surgical disciplines can contribute to resource efficiency

ONE energy solution that allows you to:

Have access to the latest innovations in cutting and coagulation for optimal patient treatment

- Improve operating room efficiency by simultaneous use of cutting and coagulation devices
- Limit hospital inventory by offering 1 system for multidisciplinary use in the OR
- Simplify the set up & optimise ease of use
- Be exposed to less surgical smoke

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

PEAK PlasmaBlade[®]

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

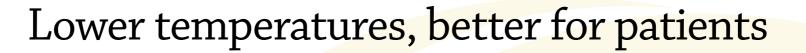
The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

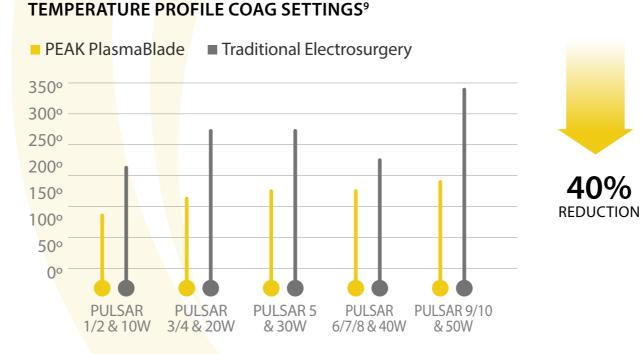
References


The PEAK PlasmaBlade[®] is a surgical dissection instrument that uses very brief, high frequency pulses of RF energy to induce electrical plasma along the outer edge of a very thin, 99.5% insulated electrode.⁴

The PEAK PlasmaBlade[®] uses less total energy and operates at significantly lower temperatures than traditional electrosurgical technology (40-170°C vs. 200-350°C)³

The PEAK PlasmaBlade[®] helps to minimise thermal tissue damage and helps increase efficiency resulting in cost savings for the hospital^{3,8}

PLASMA


BLADE TIP

TEMPERATURE PROFILE CUT SETTINGS⁹

PEAK PlasmaBlade Traditional Electrosurgery 350° 300° 250° 200° 150° **64%** 100° REDUCTION 50° 00 PULSAR PULSAR PULSAR 5 PULSAR PULSAR 9/10 3/4 & 20W 1/2 & 10W& 30W 6/7/8 & 40W & 50W

The PEAK PlasmBlade demonstrated an average **64% reduction in blade temperature** compared to traditional electrosurgery for similar cut settings

The PEAK PlasmBlade demonstrated an average **40% reduction in blade temperature** compared to traditional electrosurgery for similar coag settings

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

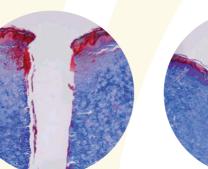
Advanced Energy eXperience

PEAK PlasmaBlade®

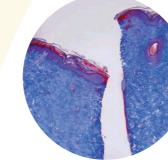
The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value


Ordering information

References


THERMAL INJURY PROFILE

The PEAK PlasmaBlade[®] has demonstrated a 74% reduction of thermal tissue damage compared to electro cautery⁴

Tissue effect is similar to the use of a scalpel and significantly improves wound strength, wound healing and the cosmetic appearance of scars^{3,4}

SCALPEL CUT

PLASMABLADE CUT

ELECTROSURGERY CUT

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade[®] The proven value

Aquamantys[®] System The proven value

Ordering information

References

Lower temperatures, better for patients

74% reduction of thermal tissue damage^₄

Improve efficiency using single skin to skin instrument

Reduce inflammatory response compared to traditional electro surgery⁴

Minimise exposure to surgical smoke⁹

AEX

Traditional Electrosurgical Instrument Area COAG 40 watts

Advanced Energy eXperience

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

References

PEAK PLASMABLADE 4.0

- Ergonomic handle design for comfort and control
- Precise 4.0mm-wide electrode
- Bendable shaft
- Rotating tip

PEAK PLASMABLADE 3.0S

- Ergonomic handle design for comfort and control
- Telescoping shaft from 5.5cm to 15cm with locking mechanism for improved stability
- Precise 3.0mm-wide electrode
- Integrated suction for less smoke exposure and enhanced visibility

PEAK PLASMABLADE NEEDLE

- Needle tip electrode for high precision
- Bendable shaft
- Rotating tip

BACK

The Aquamantys[®] System

THE HEMOSTATIC SOLUTION FOR YOU, YOUR PATIENT AND YOUR HOSPITAL

The Aquamantys[®] System uses Transcollation[®] Technology – a combination of RF energy and saline - to provide hemostatic sealing of soft tissue and bone during surgery. The combination of RF energy & saline allows the device temperature to stay at approximately 100°C – nearly 200°C less than conventional devices. The lower operating temperature produces a tissue effect without the associated smoke and charring found in other methods

PEAK PlasmaBlade®

Advanced Energy

eXperience

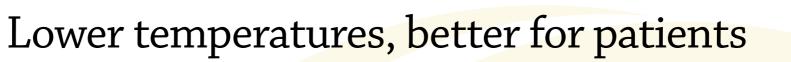
The need for innovation

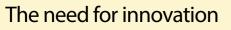
The Aquamantys[®] System

PEAK PlasmaBlade[®] The proven value

Aquamantys[®] System The proven value

Ordering information


References


STEP 1 RF energy and saline are applied to tissue

STEP 2 Shrinkage of collagen in the vessel occurs

STEP 3 Vessels <1 mm in diameter may be occluded

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

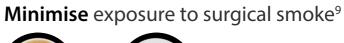
PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

References

Reduce blood loss and transfusion rates^{10,11,12}


Improve visibility in the surgical field, allowing to be more confident to work near critical structures¹

Decrease surgical time^{13,14}

Lower complication rates, improving patient outcomes^{10,15}

Traditional Electrosurgical Instrument CUT 40 watts

Aquamantys 6.0 Bipolar Sealer Area COAG 170 watts

Tailored design for effective and quick bleeding control

AQUAMANTYS® BIPOLAR SEALERS

A wide variety of handheld disposables are available to enable surgeons to effectively & quickly achieve hemostasis for:

- bleeding of large tissue planes & bone and (6.0, 2.3 & SBS 5.0 open sheath)
- bleeding near sensitive structures such as dura & nerve roots (EVS, Mini EVS, SBS 5.0 closed sheath)

6.0 **BIPOLAR** 2.3 **BIPOLAR** SEALER SEALER Large sized electrode Medium sized design for treatment electrode design of large soft tissue for more precise planes & bone hemostatic sealing (sheath open)

(MINI) EVS **EPIDURAL VEIN SEALER**

Insulated shaft enables surgeons the use near sensitive structures like dura & nerve roots

SBS 5.0

SHEATHED **BIPOLAR SEALER** Retractable sheath that allows surgeon flexibility to use near sensitive

structures such as dura & nerve roots (sheath closed) and for treatment of large soft tissue planes & bone

MBS MALLEABLE BIPOLAR SEALER WITH LIGHT Malleable shaft and built in

light allow surgeons to reach difficult anatomies & aids in improved visibility

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Ordering information

References

BACK

vplasmaBlade

The proven value of PEAK PlasmaBlade[®]

Better outcomes for patients, physicians and hospitals

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade® The proven value

Cardiac device replacements

Breast oncology & reconstructive surgery

Orthopedic surgery

Aquamantys[®] System The proven value

Ordering information

References

Cardiac device replacements Breast oncology & reconstructive surgery

Orthopedic surgery

Safe

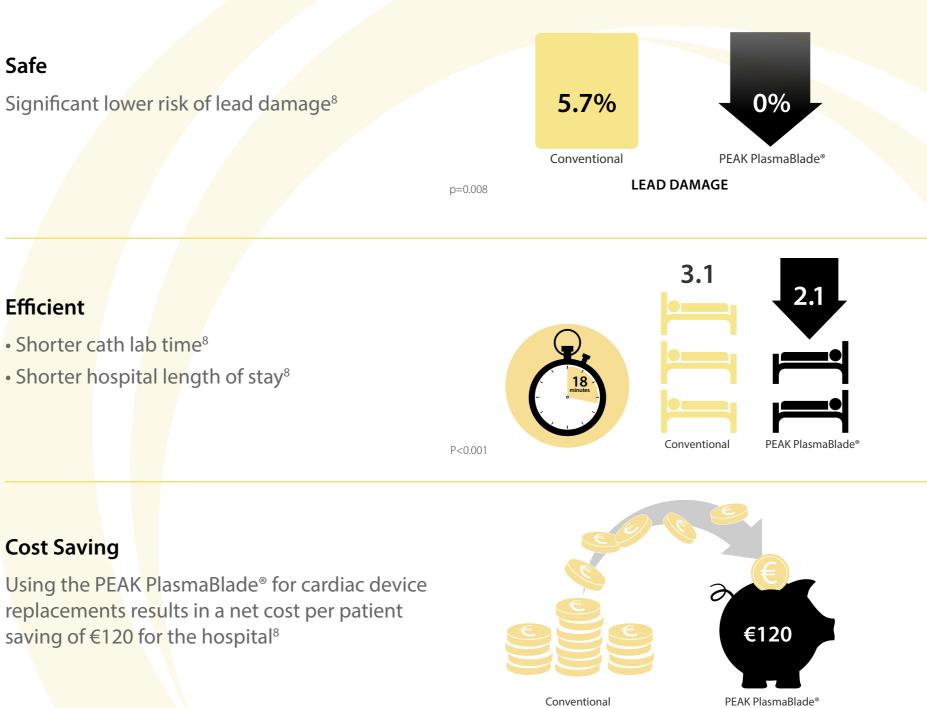
The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value


Cardiac device replacements

Breast oncology & reconstructive surgery

Orthopedic surgery

Aquamantys® System The proven value

Ordering information

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade[®] The proven value

Cardiac device replacements

Breast oncology & reconstructive surgery

Orthopedic surgery

Aquamantys[®] System The proven value

Ordering information

References

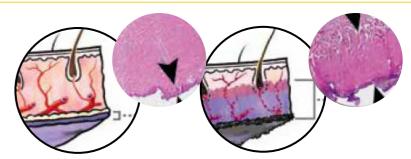
Reduce mean drainage volume & duration in mastectomies

Atraumatic cutting with less thermal damage results in shorter drainage duration and amount¹⁶

Reduce thermal damage to surgical margins⁴

Improving the quality of histopathology specimens

Improves wound strength, wound healing & cosmetic appearance of scars


Reducing the incidence of tissue necrosis and preserving the subcutaneous vascular structure are imperative for optimal reconstruction¹⁷

Resource Efficient

Using the PEAK PlasmaBlade to reduce drainage volume and duration may contribute to shorter hospital length of stay and associated costs

Orthopedic surgery

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade[®] The proven value

Cardiac device replacements

Breast oncology & reconstructive surgery

Orthopedic surgery

Aquamantys[®] System The proven value

Ordering information

References

Save time⁹

The result of using PEAK PlasmaBlade versus scalpel/ traditional electro surgery is improved bleeding control and elimination of instrument exhanges (demonstrated in total knee arthroplasty)

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Spine surgery

Surgical oncology

Orthopedic surgery

Ordering information

References

Reduce Blood Loss

The Aquamantys[®] System has proven to lower blood loss and transfusion rates.¹¹ This may decrease complications and post-operative morbidity

Save time

Decrease surgical time and improve continuity during surgery due to improved visibility of the surgical field^{1,13}

Resource Efficient

Using the Aquamantys[®] System to reduce blood loss & complication rates may contribute to reduced hospital length of stay and associated costs^{18,19}

Surgical oncology

Liver resection, Distal pancreatectomies, Partial nephrectomies

Reduce blood loss and lower transfusion rates

Using the Aquamantys System in combination with Cusa for liver resection can result in significant lower blood loss (677 ml vs. 1076 ml, p=0.0486).²⁰ Transfusion rates are as low as 3.5% compared to published averages of 15-35%¹²

Save time

Hepatic transection time can be significantly reduced¹²

Decrease complication rates

Novel method of stump closure for distal pancreatectomy with a 75% reduction in pancreatic fistula rate²¹

Resource Efficient

Using the Aquamantys[®] System to reduce blood loss & complication rates may contribute to reduced hospital length of stay and associated costs^{18,19}

75%

The need for innovation

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Spine surgery

Surgical oncology

Orthopedic surgery

Ordering information

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys® System

PEAK PlasmaBlade® The proven value

Aquamantys[®] System The proven value

Spine surgery

Surgical oncology

Orthopedic surgery

Ordering information

References

Significantly improving blood management

- Lower intra-operative blood loss & transfusion rates^{10,22,23}
- Reduced post operative drainage²³
- Maintained hemoglobin levels¹⁰

Lower complication rates

Fewer hematomas (hip arthroplasty) and reduced post-operative incidence of hemarthrosis may lead to less pain and swelling^{15,23}

Cost effective

The use of Aquamantys System has demonstrated a reduction in hospital length of stay for revision hip arthroplasty.¹⁵ Minimising length of stay and complication rates may result in lower hospital costs

Ordering information

AEX GENERATOR & ACCESSORIES

Advanced Energy eXperience AQUAMANTYS® BIPOLAR SEALERS	
Aquamantys 6.0 Bipolar Sealer 23-112-1	
PEAK PlasmaBlade [®] Aquamantys 2.3 Bipolar Sealer 23-113-1	
Aquamantys 9.5XL Bipolar Sealer 23-313-1	
Aquamantys Endo DBS 8.7 Bipolar Sealer 23-317-1	
The Aquamantys [®] System MBS Malleable Bipolar Sealer with Light 23-301-1	
Aquamantys SBS 5.0 Sheated Bipolar Sealer 23-312-1	
PEAK PlasmaBlade® Mini EVS Epidural Vein Sealer 23-314-1 The proven value	
Aquamantys [®] System PEAK PLASMABLADE [®]	
The proven valuePEAK PlasmaBlade 4.0PS200-040	
PEAK PlasmaBlade 3.0S PS210-030S	
Ordering information PEAK PlasmaBlade Needle PS 200-001	

References

- 1. Santiago, P. (2009). Controlling epidural bleeding and improving visibility during spinal surgery with a novel bipolar sealing technology: a case report. Company funded, non-peer-reviewed Medtronic white paper.
- 2. Hofmann, A., Ozawa, S., Farrugia, A., Farmer, S. L., & Shander, A. (2013). Economic considerations on transfusion medicine and patient blood management. Best Practice and Research: Clinical Anaesthesiology, 27(1), 59-68.
- 3. Chang, E. I., Carlson, G. a., Vose, J. G., Huang, E. J., & Yang, G. P. (2011). Comparative healing of rat fascia following incision with three surgical instruments. Journal of Surgical Research, 167(1), 47-54.
- 4. Ruidiaz, M.E., Messmer, D., Atmodjo, D.Y., Vose, J.G., Huang, E.J., Kummel, A.C., Rosenberg,H.L., & Gurtner, G.C. (2011). Comparative healing of human cutaneous surgical incisions created by the PEAK PlasmaBlade, conventional electrosurgery and a standard scalpel. Plast Reconstr Surg., 128(1):104-111.
- Hill, D. S., O'Neill, J. K., Powell, R. J., & Oliver, D. W. (2012). Surgical smoke A health hazard in the operating theatre: A study to quantify exposure and a survey of the use of smoke extractor systems in UK plastic surgery units. Journal of Plastic, Reconstructive and Aesthetic Surgery, 65(7), 911-916.
- Tseng, H.S., Liu, S.P., Uang, S.N., Yang, L.R., Lee, S.C., Liu, Y.J., & Chen, D.R. (2014). Cancer risk of incremental exposure to polycyclic aromatic hydrocarbons in electrocautery smoke for mastectomy personnel. World Journal of Surgical Oncology, 12(1), 12-31.
- Krones, C. J., Conze, J., Hoelzl, F., Stumpf, M., Klinge, U., Möller, M., Dott, W.,Schumpelick, V., Hollender, J. (2007). Chemical composition of surgical smoke produced by electrocautery, harmonic scalpel and argon beaming. A short study. European Surgery Acta Chirurgica Austriaca, 39(2), 118-121.
- Kypta, A., Blessberger, H., Saleh, K., Hönig, S., Kammler, J., Neeser, K., & Steinwender, C. (2015). An Electrical Plasma Surgery Tool for Device ReplacementRetrospective Evaluation of Complications and Economic Evaluation of Costs and Resource Use. Pacing and Clinical Electrophysiology, 38(1), 28-34.
- 9. Medtronic data on file.
- Marulanda, G. a, Krebs, V. E., Bierbaum, B. E., Goldberg, V. M., Ries, M., Ulrich, S. D., Seyler, T. M., & Mont, M.A. (2009). Hemostasis using a bipolar sealer in primary unilateral total knee arthroplasty. American Journal of Orthopedics (Belle Mead, N.J.), 38(12), 179-183.
- Mankin, K. P., Moore, C. a., Miller, L. E., & Block, J. E. (2012). Hemostasis With a Bipolar Sealer During Surgical Correction of Adolescent Idiopathic Scoliosis. Journal of Spinal Disorders & Techniques, 25(5), 259-263.
- 12. Kaibori, M., Matsui, K., Ishizaki, M., Sakaguchi, T., Matsushima, H., Matsui, Y., & Kwon, a. H. (2013). A prospective randomized controlled trial of hemostasis with a bipolar sealer during hepatic transection for liver resection. Surgery (United States), 154(5), 1046-1052.

- Gordon, Z.L., Son-Hing, J.P., Poe-Kochert, C., Thompson, G.H. (2013). Bipolar Sealer Device Reduces Blood Loss and Transfusion Requirements in Posterior Spinal Fusion for Adolescent Idiopathic Scoliosis. J Pediatr Orthop. Journal of Pediatric Orthopaedics, 33(7), 700-706.
- 14. Snyder, B., Hedequist, D., Shannon, E., & N, E. S. R. (2007). Bipolar Sealing Technology to Control Bleeding in Pediatric Spine Surgery : A Retrospective Study. Poster Presentation at Pediatric Orthopaedic Society of North America Annual Meeting 2007; Hollywood FL, (c).
- 15. Ackerman, S. J., Tapia, C. I., Baik, R., Pivec, R., & Mont, M.A. (2014). Use of a Bipolar Sealer in Total Hip Arthroplasty: Medical Resource Use and Costs Using a Hospital Administrative Database. Orthopedics. 37(5), 472-481.
- Dogan, L., Gulcelik, M. A., Yuksel, M., Uyar, O., Erdogan, O., & Reis, E. (2013). The effect of plasmakinetic cautery on wound healing and complications in mastectomy. Journal of Breast Cancer, 16(2), 198-201.
- 17. Fine, R. E., & Vose, J. G. (2011). Traditional electrosurgery and a low thermal injury dissection device yield different outcomes following bilateral skinsparing mastectomy: a case report. Journal of Medical Case Reports, 5(1), 205-212.
- 18. Triulzi, D.J., Vanek, K., & Ryan, D.H. (1992). A clinical and immunologic study of blood transfusion and postoperative bacterial infection in spinal surgery. Transfusion, 32(6), 517-524.
- 19. Zheng, F., Cammisa, F. P., Sandhu, H. S., Girardi, F. P., & Khan, S. N. (2002). Factors predicting hospital stay, operative time, blood loss, and transfusion in patients undergoing revision posterior lumbar spine decompression, fusion, and segmental instrumentation. Spine, 27(8), 818–824.
- Geller, D. a, Tsung, A., Maheshwari, V., Rutstein, L. a, Fung, J. J., & Marsh, J. W. (2005). Hepatic resection in 170 patients using salinecooled radiofrequency coagulation. HPB : The Official Journal of the International Hepato Pancreato Biliary Association, 7(3), 208-213.
- Blansfield, J. a., Rapp, M. M., Chokshi, R. J., Woll, N. L., Hunsinger, M.A., Sheldon, D. G., & Shabahang, M.M. (2012). Novel Method of Stump Closure for Distal Pancreatectomy with a 75% Reduction in Pancreatic Fistula Rate. Journal of Gastrointestinal Surgery, 16(3), 524-528.
- 22. Clement, R. C., Kamath, A. F., Derman, P. B., Garino, J. P., & Lee, G. C. (2012). Bipolar sealing in revision total hip arthroplasty for infection. Efficacy and cost analysis. Journal of Arthroplasty, 27(7), 1376-1381.
- 23. Rosenberg, A.G. (2007). Reducing Blood Loss in Total Joint Surgery With a SalineCoupled Bipolar Sealing Technology. Journal of Arthroplasty, 22(4), 82-85.

For a listing of indications, contraindications, precautions, warnings and potential adverse events, please refer to the instructions for use.

Advanced Energy eXperience

PEAK PlasmaBlade®

The Aquamantys[®] System

PEAK PlasmaBlade[®] The proven value

Aquamantys[®] System The proven value

Ordering information

www.medtronic.eu

Europe

Medtronic International Trading Sàrl. Route du Molliau 31 Case postale CH-1131 Tolochenaz www.medtronic.eu Tel: +41 (0)21 802 70 00 Fax: +41 (0)21 802 79 00

United Kingdom/Ireland

Medtronic UK Ltd. Building 9 Croxley Green Business Park Watford Hertfordshire WD18 8WW UK www.medtronic.co.uk Tel: +44 (0)1923 212213 Fax: +44 (0)1923 241004

UC201505618EE ©2015 Medtronic, Inc. All rights reserved.